
Standard Acts of Liaisons:
Scientific Computing Success

Stories

Rebecca Hartman-Baker
Liaison Task Lead, Scientific Computing Group

Oak Ridge Leadership Computing Facility
hartmanbakrj@ornl.gov

2

Outline

• About Liaisons
•  Liaison Role
• Success Stories

3

About Liaisons

• PhD-level scientists with expertise in computation
–  Astrophysics, biology, chemistry, climate, computer science,

engineering, materials science, mathematics, nuclear physics,
plasma physics, etc.

–  Experienced computational scientists with one thing in common

•  Liaisons matched with INCITE projects based on science,
mathematical, and algorithmic expertise
–  Can’t always match for science first, e.g., I am not a chemist, but I

am familiar with their math and algorithms

• Our motto: Whatever it takes!

4

Liaison Role

•  Liaisons are collaborators whose unique expertise with
leadership-level computers will enhance your experience
and help you get more science done

•  Levels of liaison support
–  Level 1: User support +
–  Level 2: Paratrooper – fix a specific problem in your code, O(1

month)
–  Level 3: Embedded member of code development team and

science collaborator

5

Liaison Role

•  Typical liaison activities
–  Profile code performance, providing feedback to code team
–  Code porting
–  Implement solutions to problems experienced by application

scientists
–  Advocate for users regarding tools, libraries, etc.
–  Collaborate scientifically

6

Scientific Computing Success Stories

• Recent successes, chosen to illustrate our typical tasks
• Many more success stories where these came from
• Next year: your code?

7

Code Profiling

• Code profiling: similar to energy audit of your home
–  Look at code’s behavior, find bottlenecks, time sinks (leaking

windows, old weather stripping)
–  Make recommendations for improvements to your code (replace

windows, install a new water heater)

•  Tools we typically use for this (you can try it too!):
–  Vampir and VampirTrace
–  Craypat

8

VampirTrace/Vampir

• VampirTrace: instrument code to produce trace files
–  Compile with VT wrapper, run code and obtain trace output files

• Vampir: use to visualize trace
–  Run in interactive job of nearly same size as job that produced

trace files
–  Server on interactive job serves as analysis engine to local front-

end

9

CrayPAT

• Package for instrumenting and tracing codes on Cray
systems

• Run instrumented code to obtain overview of code behavior
• Re-run with refined profiling, to trace most important

subroutines

10

Code Profiling: Example 1 (Bigstick)

•  I profiled Bigstick, a configuration interaction nuclear physics
code

• Promising for large-scale nuclear configuration calculations,
because it does not require as much memory

• But, does not scale well
• My task: find out why
• Used Vampir/VampirTrace to create graphical representation

of code performance

11

Top-Level Overview

12

Three Steps within Triangle

13

Block Reduce Phase

14

Bigstick: Analysis

•  Triangular pattern in overview reminiscent of sequential
algorithm applied across processors
–  Digging deeper shows in orthogonalization phase, processors held

up by single processor writing to Lanczos vector file
–  Suggestion: reduce amount of orthogonalization performed

• Disproportionate time spent in MPI_Barrier (~30%)
–  Indicative of load imbalance
–  Barriers are within clocker subroutine, used for performance

timings, obscuring evidence of load imbalance

• Majority of time in block reduce phase spent in
MPI_Allreduce
–  Combining Allreduces could improve performance

15

Code Profiling: Example 2

• We first profiled j-coupled version of NUCCOR with CrayPat
• Discovered it spent >50% of its time sorting in test

benchmark
–  Found it was using highly inefficient bubble-sort-like algorithm
–  Replaced “Frankenstein sort” with heapsort, reduced sorting to

~3% of time

• Asked collaborators what they were sorting, and why?
–  Their response: “We’re sorting something?”

• Removed sorting altogether, code worked just fine, and ran
30% faster on long benchmark

16

Code Profiling: Example 2 (continued)

• We next profiled standard version
• Discovered it spent nearly 70% of time in single subroutine:
t2_eqn_store_p_or_n

•  This subroutine became focus of subsequent work with
NUCCOR

17

Code Porting

• Wayne Joubert, Denovo

18

What is Denovo?
•  Denovo is a radiation transport code used in

advanced nuclear reactor design
•  It solves for the density of particle flux in a 3-D

spatial volume such as a reactor
•  In particular, it solves the six-dimensional linear

Boltzmann equation (3-space, 2-angle, 1-energy)
•  Denovo scales up to 200K cores on ORNL’s 2.3PF

Jaguar system.
•  It is part of the CASL project (Consortium for

Advanced Simulation of Light Water Reactors) and
the SCALE code system (Standardized Computer
Analyses for Licensing Evaluation)

•  It was selected as an early port code for Titan

19

Denovo Algorithms
•  Primary algorithms: the discrete ordinates

method, 3-D sweep, GMRES linear solver and
various eigensolvers, e.g., Arnoldi

•  The execution time profile has a very prominent
peak: nearly all the execution time (80-99%) is
spent in a 3-D sweep algorithm.

•  Because of this, the 3-D sweep must be the
central focus of any effort to port Denovo to a
accelerator-based system

•  However, the sweep is a complex algorithm that
is difficult to parallelize efficiently.

20

3-D Sweep Algorithm: Description
•  Denovo is based on a 3-D structured grid
•  The data dependency for the sweep operation is

specified by a 4-point stencil
•  The result at every gridcell is dependent on the

result at the immediately lower gridcells in X, Y
and Z.

•  This induces a wavefront computation pattern – a
sequence of diagonal planes sweeping in from a
corner.

•  Thus, results at the far side of the grid cannot be
computed until results at the near side are
completed

•  For standard parallel grid decompositions, most
of the processors will be idle much of the time

21

How to Program the Sweep on the GPU?

•  Sweep is a complex algorithm, with many dimensions. Directives may
not be flexible enough or expose enough hardware functionality to get the
needed performance.

•  NVIDIA support OpenCL, but going forward CUDA will be better
supported and more in-sync with new hardware features.

•  Thus use CUDA. Use C++ for consistency with Denovo base language.

•  Decide what language / parallel API to use to program the GPU.
•  Options:

1.  CUDA: a minor extension of C/C++ for GPU thread programming,
also available for Fortran 90

2.  OpenCL: a multi-vendor standard similar to CUDA
3.  Compiler directives: similar to OpenMP (PGI, CAPS, Cray, ...)

22

Mapping the Algorithm to the GPU
We have many candidate dimensions for parallelism:
space (3), energy, moment/angle, octant, and also
unknown (4 unknowns per gridcell for this
discretization).
We are told by NVIDIA that we need 4K-8K threads for
the GPU to keep all GPU streaming multiprocessors
busy and cover various latencies.
Also need the right kind of parallelism – proper
decoupling of data.
Also must have good memory access patterns (reuse of
data loaded from global memory, coalesced stride-1
memory references, good use of registers, shared
memory, caches on the GPU).
Approach: explore each problem dimension for
potential thread parallelism.

23

1. Parallelism in Energy
•  Denovo exposes energy as a parallel dimension.
•  Values for different energies are entirely independent in the 3-D sweep,

thus the algorithm is embarrassingly parallel along this axis (!).
•  Model problem has 256 energy groups – this helps, but we need to look

further in order to get to 4K-8K threads.
•  Also need to use some of this 256 for node parallelism.

24

2. Parallelism in Octant
•  Algorithm requires sweeps from 8 different directions.
•  Sweep directions are independent, thus another 8X thread parallelism (!).
•  Small issue: different octants update the same output vector, so we need

to schedule properly to avoid write conflicts.

25

3. Parallelism in Space

•  We have this recursion, as mentioned before, that makes the
computations non-independent.

•  However, the global KBA algorithm can be applied at this small scale (!).
•  Set up block wavefronts, assign blocks to threads.
•  Sync between block wavefronts.

26

Performance

•  With this parallelization scheme, code performed at only about 1% of
peak flop rate, much lower than predicted by the performance model

•  Reason: excessive use of registers caused spillage to main memory, thus
poor performance

•  Needed to find more/better axes of parallelism

27

4. Parallelism in Angle, Moment

•  A new strategy to parallelize the moment/angle axes at the gridcell level
– map these axes to CUDA threads in-warp.

•  Small dense matrix-vector products are perfect for thread parallelism –
store vector in shared memory, relieve the register pressure.

•  The two small matrices are the same across all gridcells (!), so they can
be retained in L1 cache, to reduce a potentially high source of memory
traffic.

28

Summary of Mapping of Dimensions

GPU
Compute
Hierarchy

Thread

 Warp

Thread
 block

 Grid

registers 32 threads
execute in
lockstep

up to 48 warps
access shared memory;

can sync warps

fully independent
threadblocks

Denovo
Problem
Dimensions

octant
energy

fully
decoupled

space
use KBA;
need sync

moment
angle
use

threads
in a warp

per-gridcell
unknowns

tightly
coupled

29

Results: Test Problem

•  32x32x128 gridcells
•  16 energy groups
•  16 moments
•  256 angles
•  Linear discontinuous elements –

4 unknowns per gridcell

30

Results: Sweep GPU Performance

AMD	 Istanbul	 	 1	
core	

NVIDIA	 C2050	
Fermi	

Ra<o	

Kernel	 compute	 -me	 171	 sec	 3.2	 sec	 54X	
PCIe-‐2	 -me	 (faces)	 -‐-‐	 1.1	 sec	

TOTAL	 171	 sec	 4.2	 sec	 40X	

•  Single core (AMD Istanbul) / single GPU (Fermi C2050) comparison

0
20
40
60
80

100
120
140
160
180

AMD	 Istanbul,	 1	
core

NVIDIA	 C2050	
Fermi

NVIDIA Fermi is 40X faster
than single Opteron core

31

Observations

•  40X faster than Istanbul core.
•  Istanbul is 6-core, so Fermi about 7X faster than the entire Istanbul processor.
•  For both CPU and GPU, code attains about 10% of peak flop rate – this is

considered good for this algorithm.
•  Expect more optimizations to be possible going forward.

32

Solving Code Problems

• Valentine and VPIC

33

VPIC

•  3-D electromagnetic relativistic particle-in-cell simulation
code

•  Ticket came in about VPIC failing at high core counts
•  I asked newest colleague Valentine Anantharaj to take a

look, with support from two experienced liaisons (Hai Ah
Nam and myself)

• With Hai Ah’s help, he isolated location of failure
•  Libraries were incompatible because of version changes;

recompiling with fresh environment and proper modules
loaded eliminated the error

34

User Advocates

• Markus and Vasp
• Queue priority
• Software needs

35

VASP

• Vienna Ab-initio Simulation Package
•  Licensed software, builds maintained by Markus Eisenbach
• Optimized builds that run more efficiently on Jaguar

36

Queue Priority

•  Liaisons have science-area expertise, and understand
unique needs of users

• Advocate and explain why exception is needed
• Advocate for users whose allocations have been exhausted

37

Software Needs

• Advocate for users’ software needs
• Serve as translator between projects and Resource

Utilization Council (RUC)

38

Scientific Collaboration

• Hai Ah Nam, Nuclear Physics

39

Nuclear Physics

• Germanium-72 experiences at least 2 phase
transitions

• Phase transitions a function of pairing of neutrons,
rotation of nucleus, and temperature

• Reminiscent of superconductors

40

Nuclear Physics

•  Studying Carbon-14 half-life with three-body interactions
–  Easy and cheap to approximate nuclear forces with two-body interactions

(p+p, p+n, n+n)
–  For better accuracy, need three-body interactions (3p, 2p+1n, 1p+2n, 3n)

– using 2-body only underestimates half-life
–  BUT, adding 3-body interactions adds significant computational cost and

memory requirements
–  Fortunately, on Jaguar this calculation is possible

41

Visualizing Spontaneous Fission of
Heavy Nuclei

• Collaboration with A.
Staszczak, UT/
Warsaw

• Project of summer
student Elizabeth
Morris

•  In collaboration with
visualization liaisons
Dave Pugmire, Sean
Ahern, Ross Toedte

42

Spontaneous Fission of Fermium-258
• Unusual, unexpected deformation of nucleus

43

Conclusions

•  Liaisons are a valuable resource for INCITE projects
•  Liaisons have unique HPC skills that projects can take

advantage of
• Whatever it takes!

44

Acknowledgments

• Wayne Joubert
• Hai Ah Nam
• Scientific Computing group
•  INCITE project participants

45

Questions?

